

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

B.E. / B. Tech. (Full Time) - END SEMESTER EXAMINATIONS, APRIL / MAY 2024

ELECTRICAL AND ELECTRONICS ENGINEERING

Semester III

EE5304 ELECTRIC CIRCUIT ANALYSIS

(Regulation 2019)

Time: 3hrs

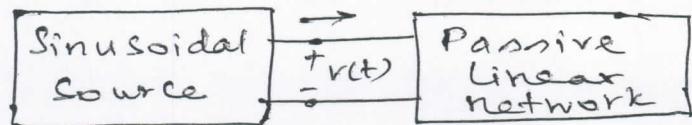
Max. Marks: 100

CO 1	Able to understand the basic concepts of electrical circuits. ,
CO 2	Ability to compute solutions to first and second order networks.
CO 3	Ability to construct and analyze equation representing AC circuits.
CO 4	Ability to compute circuit representations quantitatively in Laplace domain.
CO 5	Able to construct and analyze two port networks and its parameters.

BL - Bloom's Taxonomy Levels

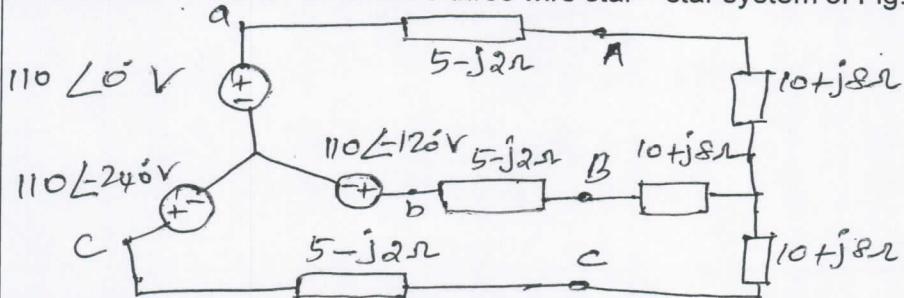
(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks)
(Answer all Questions)

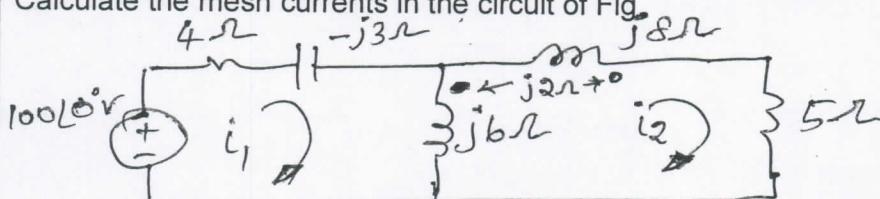

Q. No	Questions	Marks	CO	BL
1	Compare independent sources with dependent sources.	2	1	1
2	State Maximum Power Transfer Theorem.	2	1	1
3	Define time constant of RL circuit.	2	2	2
4	What you mean by transient state response?	2	2	2
5	Sketch the impedance diagram of RLC circuit.	2	3	2
6	List the features of ideal transformer.	2	3	2
7	What is poles and zeros in transfer function.	2	4	1
8	Draw the variation of circuit current against supply frequency in series resonance circuit.	2	4	1
9	Mention the significance of two port network.	2	5	2
10	Write the importance of interconnections of two port networks.	2	5	2

PART- B (5 x 13 = 65 Marks)
(Restrict to a maximum of 2 subdivisions)

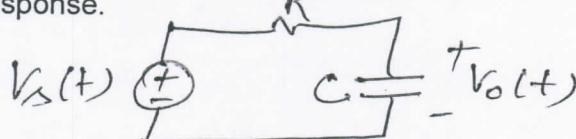
Q. No	Questions	Marks	CO	BL
11 (a) (i)	Determine V_o and i in the circuit shown in Fig. 	7	1	3
(ii)	Calculate the node voltages in the circuit shown in Fig. 	6	1	3
(OR)				


11 (b) (i)	Using Superposition theorem, find V_o in the circuit in Fig.	7	1	3
(ii)	For the circuit in Fig., Obtain the dual circuit.	6	1	3
12 (a) (i)	The switch in the circuit in Fig., has been closed for a long time, and it is opened at $t = 0$. Find $V(t)$ for $t \geq 0$. Calculate the initial energy stored in the capacitor.	7	2	3
(ii)	Find $i(t)$ in the circuit in Fig. Assume that the circuit has reached steady state at $t = 0$.	6	2	3
(OR)				
12 (b) (i)	The switch in the circuit of Fig. has been closed for a long time. At $t = 0$, the switch is opened. Calculate $i(t)$ for $t > 0$.	7	2	3
(ii)	For the circuit in Fig., find $v(t)$ and $i(t)$ for $t > 0$. Consider these case: $R = 5 \Omega$.	6	2	3
13 (a) (i)	Determine $V_o(t)$ in the circuit in Fig.	7	3	4
(ii)	Given that, $v(t) = 120 \cos(377t + 45^\circ) V$ and $i(t) = 10 \cos(377t - 10^\circ) A$. Find the instantaneous power and the average power absorbed by the passive linear network shown below.	6	3	4

$i(t)$


(OR)

13 (b) (i) Calculate the line currents in the three wire star – star system of Fig.

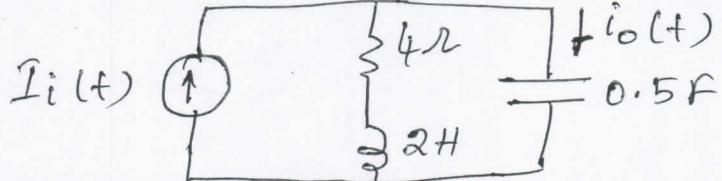

7 3 4

(ii) Calculate the mesh currents in the circuit of Fig.

6 3 4

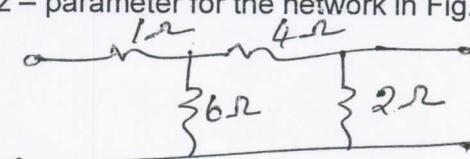
14 (a) (i) For the RC circuit in Fig., obtain the transfer function V_o/V_s and its frequency response.

7 4 4

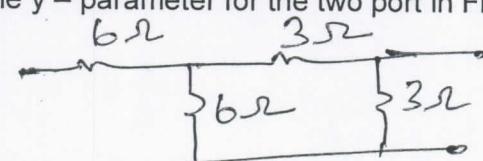

(ii) A parallel resonant circuit has $R = 100 \text{ k}\Omega$, $L = 20 \text{ mH}$, and $C = 5 \text{ nF}$. Calculate resonant frequency, quality factor and band width.

(OR)

14 (b) (i) A series connected circuit has $R = 4 \Omega$ and $L = 25 \text{ mH}$. (a) Calculate the value of C that will produce a quality factor of 50. (b) find lower and upper cut-off frequency.


7 4 4

(ii) For the circuit in Fig., calculate the gain $I_o(\omega)/I_i(\omega)$ and its poles and zeros.


6 4 4

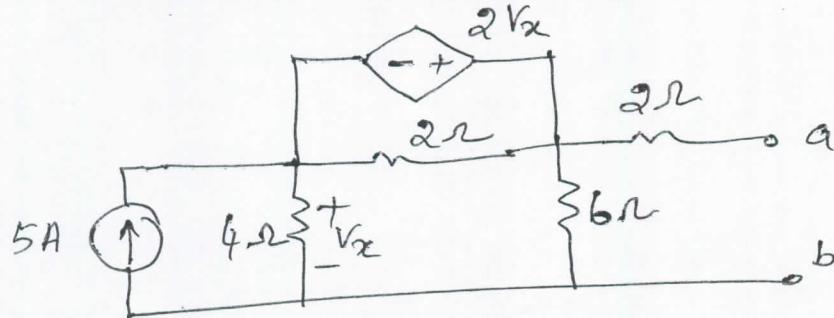
15 (a) (i) Obtain the z – parameter for the network in Fig.

7 5 4

(ii) Calculate the y – parameter for the two port in Fig.

6 5 4

(OR)


15 (b)	Find the h – parameter for the network in Fig.	7	5	4
(i)				

(ii)	Determine the transmission parameters of the circuit in Fig.	6	5	4

PART- C (1 x 15 = 15 Marks)
(Q.No.16 is compulsory)

Q. No	Questions	Marks	CO	BL
16.	Find the Thevenin equivalent of the circuit in Fig.	15	5	5

